martes, 14 de junio de 2016

Integral de Linea I

Integral curvilínea de un campo escalar

Integral de línea de un campo escalar
Para f : R2R un campo escalar, la integral sobre la curva C (también llamada, integral de trayectoria), parametrizada como r(t)=x(t)i+y(t)j con t \in [a, b], está definida como:
\int_C f\ ds = \int_a^b f(\mathbf{r}(t)) \|\mathbf{r}'(t)\|\, dt = \int_a^b f(\mathbf{x}(t),\mathbf{y}(t))\sqrt{[\mathbf{x}'(t)]^2+[\mathbf{y}'(t)]^2 }dt
donde: r: [a, b] → C es una parametrización biyectiva arbitraria de la curva C de tal manera que r(a) y r(b) son los puntos finales de C. Las integrales de trayectoria son independientes de la parametrización r(t), porque solo depende de la longitud del arco, también son independientes de la dirección de la parametrización r(t).

Integral curvilínea de un campo vectorial

Para F : RnRn un campo vectorial, la integral de línea sobre la curva C, parametrizada como r(t) con t \in [a, b], está definida como:
\int_C \mathbf{F}(\mathbf{r})\cdot\,d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t))\cdot\mathbf{r}'(t)\,dt.
donde \cdot es el producto escalar y r: [a, b] → C es una parametrización biyectiva arbitraria de la curva C de tal manera que r(a) y r(b) son los puntos finales de C.
Las integrales de línea de un campo vectorial son independientes de la parametrización siempre y cuando las distintas parametrizaciones mantengan el sentido del recorrido de la curva. En caso de elegirse dos parametrizaciones con sentidos de recorrido contrarios, las integrales de línea del mismo campo vectorial resultarán con iguales módulos y signos contrarios.
Otra forma de visualizar esta construcción es considerar que
\int_C \mathbf{F}(\mathbf{x})\cdot\,d\mathbf{x} = 
\int_C \mathbf{F}_1 dx^1+\mathbf{F}_2 dx^2+\cdots+\mathbf{F}_n dx^n
donde se aprecia que la integral de línea es un operador que asigna un número real al par (C,\mathbf{\omega}) donde
\mathbf{\omega}=\mathbf{F}_1 dx^1+\mathbf{F}_2 dx^2+\cdots+\mathbf{F}_n dx^n
es una forma

No hay comentarios.:

Publicar un comentario